Planet Earth Weekly

Climate Change and Renewable Energy: Saving Our Planet for Future Generations

Leave a comment

The Effect of Climate Change on the Saguaros of the Sonoran Desert

saguaro pic by Linn Smith

Saguaro of the Sonoran Desert

“Saguaros have evolved to rely on the summer monsoons and winter rains that prevail here.”

By Linn Smith
March 4, 2018—-Each morning I ride along the dirt paths in southwest Arizona, my dog in tow, and wonder at the giant Saguaros, towering, as if royalty of the desert. What do I know about these gigantic, human like plants? I know I am truly humbled by their presence. The beauty against the mountains, the size, the human like features of arms lifting to a blue sky above, their age and, while the world moves forward, these mammoth cactuses have survived the elements of a dry arid life in the Southwest…all part of my fascination!

But what about the survival of the Saguaros? What is the future of these majestic desert plants? With climate change comes a hotter, drier desert and with a hotter, drier desert comes a greater risk of fires and drought, making it difficult for the Saguaro to propagate according to the narrow margin of time allotted for seed dispersion that coincides with the monsoons.

And also….there’s Buffelgrass!


Buffelgrass competes with Saguaros for nutrients

Buffelgrass: A Giant Threat to a Giant Cactus

Buffelgrass is native to Africa and was transported to the desert of Arizona to prevent erosion and for cattle forage in the 1940’s. Many volunteers work tirelessly digging up the invasive grass, which competes with the Saguaros for food and water. The grass not only competes for the nutrients and water among the Saguaros, it is also fire-resistant, as the roots are able to survive a fire, allowing the Buffelgrass to endure the elements of nature and return healthier than ever.

Buffelgrass is highly flammable and burns very hot, much hotter than the Saguaros can survive. It changes a fire-resistant desert into a flammable grassland and, as climate changes and fires increase, so does the Buffelgrass. A healthy ecosystem is able to resist changes of climate due to global warming, but the buffelgrass creates an unhealthy environment for the Saguaros of the Sonoran Desert. When it fills in the bare areas between the Saguaros, the grass acts like fodder for fire caused by lightning strikes. states, “Like many such imports, which seemed like a good idea at the time, this one (Buffelgrass) has gone out of control. Approximately 2,000 acres of Saguaro National Park are currently covered with buffelgrass, and can spread at a rate of up to 35 percent per year. There’s no way for one park or its visitors to hold back global warming, but while park employees attack the fire-loving buffelgrass with herbicides, volunteers show up for communal buffelgrass pulls. It’s a difficult battle, but after great effort and thousands upon thousands of buffelgrass clumps yanked from the ground, mostly by volunteers, some land is declared free of the unwanted grass.”
The staff at Saguaro National Park states it like this, “The math of climate change is simple: Hotter summers mean a greater likelihood of fire. Warmer winters mean less chance for buffelgrass to die back in a hard freeze. It all adds up to long odds for the saguaros. If we start seeing buffelgrass come through and we have larger fires, really you can start calling us Buffelgrass National Park. The cacti are not going to survive that.”


Saguaros of the Southwest

The Saguaros and Monsoon Rains

The Saguaros only habitat on earth are the deserts of the southwest. Andy L. Fisher, chief of interpretation for Saguaro National Park says, “Even — or especially — in the desert, water is life. Saguaros have evolved to rely on the summer monsoons and winter rains that prevail here. Their adaptations to this regional weather cycle are so specific that the species is found in the Sonoran Desert and nowhere else on Earth. The saguaros have got it dialed in. They know exactly when they need to put up the fruit to put out the seeds, to get the seeds carried by the animals, to get seeds deposited just in time for the first monsoon rains.” If the monsoons fail to bring the needed rains within their usual timespan, these cactuses could soon become extinct, along with the many other species of plants throughout our planet dependent on timely conditions for survival.

Saguaro Population Regeneration

A seventy-five year study of the Saguaro cactus by the National Parks Conservation Association titled, “Saguaro Mortality and Population Regeneration in the Cactus Forest of Saguaro National Park: Seventy-Five Years and Counting,” created maps showing the percent of population change of the Saguaros according to sections. The study shows that only 12 of the 64 four-hectare (one hectare equals approximately 2.5 acres} plots had a population increase over the past 75 years in which the Saguaro was studied. The other 52 plots decreased in Saguaro population. Other studies document the same degree of regeneration.

Weiss, Castro, and Overpeck , who headed the study, contrasted the drought of the 2000s with the drought of the 1950s and point out the following. “Temperatures during the drought of the 2000s have been generally higher than during the 1950s drought due to climate change. They note that the higher temperatures increase the evapotranspiration especially in the foresummer prior to the monsoons. Hence, we suspect drought, not reproductive potential, is primarily responsible for the lack of regeneration in this population in the current era.”

The observations made during the past 75 years of this study suggest that the success of the Saguaro’s regeneration in the 21st century will depend on a combination of factors including climate and fire associated with the invasive non-native buffelgrass. Climate change may benefit some species, such as Buffelgrass, and cause extinction of others….the Saguaro, which is at risk of disappearing in the future!

If you are in the Southwest or just visiting and would like to spend a day for a worthy cause….digging Buffelgrass, contact the Desert Museum:

One last note, don’t try to poach a Saguaro to sell or relocate to your yard, as many are microchipped!

Find us on Facebook at:


Leave a comment

Extreme Climate Change: The Pleistocene Ice Age

climate change

Climate change through geological time

“Today the total mass of ice on the planet is continuing to decline as global warming increases the melting. Sea level is rising in response.”

By Dr. John J. Hidore

February 23, 2018—-Planet Earth was formed from cosmic debris approximately 4.5 billion years ago. For almost its entire history the planet has been warmer than it is today. Over the past 540 million years relatively warm conditions have existed on our planet probably 90 percent of the time. Temperatures have averaged 5 degrees C (9°F) higher than at present. However, there have been times when the planet cooled enough so that massive amounts of ice formed on the land masses.

The Pleistocene Ice Age

Probably the most important single global environmental event since the human species has been on Earth was the Pleistocene geological epoch. Large areas of the land masses were covered by sheets of ice and mountain ranges supported many individual glaciers. Geologists have dated the Pleistocene Epoch as beginning about 2,588,000 years ago and continued until about 11,700 years ago.

The Pleistocene ice age was not a single glacial expansion followed by warming. It included several large advances and retreats. Each period of expansion included many minor advances and retreats. Significant fluctuations in the last million years averaged about 100,000 years in length. Of the 100,000 year periods, extreme cold prevailed about 90% of the time. The warm periods, or interglacials, were relatively short, averaging approximately 10,000 years.

Areas Covered by Ice

During this epoch large ice sheets formed in both hemispheres on land masses near the poles. At the maximum some 30% of earth’s land surface was covered by ice. The ice sheets reached a thickness of 1500 to 3000 meters (4950-9900 ft). The impact of the ice sheets extended well out from the edge of the ice. Permafrost (permanently frozen soil) extended outward several hundred kilometers in both North America and Eurasia. In North America the present path of the Ohio and Missouri Rivers mark the approximate southern limit of the ice sheet. These two rivers were formed by the melted water at the edge of the ice.

Mountain ranges developed glaciers that extended into the surrounding lowlands and in many cases into the nearest ocean. Pack ice covered the polar seas, and icebergs floated far into the tropical oceans being carried by cold ocean currents.

climate change

Climate Change over geological time


During the time when ice was most extensive over Earth, temperatures averaged 4°C ( 7.2°F) less than at present. In the northern hemisphere it was perhaps 8 to 12°C (14 – 25º F) lower than the current mean temperature. At the edge of the ice the temperature was about -6°C ( -21º F). At the edge of the permafrost is was 0°C (32º F).

The Wisconsin Glacial Advance

The most recent major glacial advance in North America is known as the Wisconsin. It has other names in other geographical regions. It took place about 30,000 to 12,000 years ago. The peak of the advance was about 18,000 years ago. Huge ice sheets extended as far south as 50º N in Scandinavia and to 40º N in North America. Polar ocean currents extended in the North Atlantic as far south as 45º N. The ice mass was great enough to lower sea level approximately 125 to 140 meters (413 to 462 ft). As the ice accumulated the continental margins changed and the landmasses became more extensive. It was during this time that there may have been a land bridge between Asia and North America, allowing humans to cross into North America.

The Pleistocene ice age had a tremendous effect on Earth. The ice sheets and mountain glaciers changed the surface of the land over large areas. There are still visible features on the continents resulting from the moving ice. There was also a mass extinction of species. Large numbers of species of plants and animals disappeared. The melting of the ice continues to impact life including our species.

The ice has been retreating irregularly since its peak. Over the last 6000 years, sea level has been within a meter (3.3 ft) of that of the present. Today the total mass of ice on the planet is continuing to decline as global warming increases the melting and sea levels is rising in response.

Leave a comment

Jostein Gaarder on Climate Change

“Human activity is draining resources and destroying natural habitats.”

By Linn Smith

February 6, 2018—–Besides being a successful author, Jotstein Gaarder works to support both human rights and a sustainable environment. Gaarder clearly states our current world condition concerning the cause and effect of climate change in the following article, which is the foreword to his 20th addition of Sophie’s World. Sophie’s World is a novel he wrote in 1995 which became a best seller around the world. 

This exerpt is from the article, “Sophie’s World in Danger: Living as though everything centres on our time is just as naïve as thinking the Earth is flat” from

“Two decades ago, a history of philosophy by an unknown Norwegian teacher became a most unlikely phenomenon. But how has time changed the writer? And how might he change his book now, if he could? Jostein Gaarder takes up his own story. However, by far the most important philosophical question of our time must be this: how are we going to save our civilization and the basis of our existence?

From time to time I am asked a question. If I had written Sophie’s World today, is there something important I would have added? Is there something I would have placed more emphasis on? The answer is a resounding yes! If I were to write a philosophical novel today, I would have focused a lot more on how we treat our planet.

It is strange to look back after only 20 years and realize that Sophie’s World doesn’t really address this question. The reason may be that over the course of these 20 years we have gained an entirely new awareness of climate change and the importance of biological diversity. An all-important principle in the study of ethics has been the golden rule, otherwise known as the reciprocity principle: do to others what you would like them to do to you. Over time, we have learnt to apply this rule more widely. In the Sixties and Seventies, people came to realize that the reciprocity principle must apply across national borders, both to the north and to the south.

But the golden rule can no longer just apply across space. We have begun to realize that the reciprocity principle applies across time, too: do to the next generation what you would like them to have done to you, had they lived on the planet before us.

It’s that simple. Love thy neighbor as thyself. Obviously, this rule must apply to the next generation and to everyone who lives on the planet after us. They are human beings, too. Therefore, we should not leave behind a planet which is less valuable than the one we have enjoyed. A planet with fewer fish in the sea. Less drinking water. Less food. Fewer rainforests. Fewer coral reefs. Fewer species of animals and plants… Less beauty. Less wonder. Less splendor and happiness.

Jostein Gaarder

Climate change and responsibility

The 20th century has taught us that people need conventions and obligations which go beyond national boundaries. 

The question we are left with at the beginning of the 21st century is: for how long can we claim human rights without accepting they come with fundamental obligations. The time is ripe for a Universal Declaration of Human Obligations. It no longer makes sense to think about an individual’s rights and freedoms without also thinking about the responsibility of individuals and individual states – not least our responsibility to safeguard the rights of future generations.

At this very moment we are experiencing the consequences of man-made climate change. They are dramatic. However, opinion polls indicate that the people of this world are not particularly concerned. One day in the future, global-warming denial may be considered one of the greatest conspiracies of all time.
The era we live in is exceptional in every way. On one hand, we belong to a triumphant generation, which can explore the universe and map the human genome. On the other, we are the first generation seriously to lay waste to the environment. Human activity is draining resources and destroying natural habitats. We are changing our surroundings to such an extent that people think of our time as an entirely new geological era.

Climate change and sustainable living

Jostein Gaarder

Huge volumes of carbon are contained in plants, animals, the sea, oil, coal and gas. The carbon is just itching to be oxidized and released into the air. The atmosphere on dead planets such as Venus and Mars is mostly CO2, and that would also be the case here if the Earth’s processes didn’t hold the carbon at bay. But from the end of the 18th century, fossil fuels have tempted us like the genie in Aladdin’s lamp. “Release us,” they whispered. And we gave into that temptation. Now we are trying to force the genie back inside the lamp.

If all the remaining oil, coal and gas on this planet is extracted and burnt, our civilization will not survive. But many people and many countries see this as their divine right. Why shouldn’t they use the fossil fuels on their land? Why shouldn’t countries with rainforests chop them down? What’s the difference? What difference will it make to CO2 levels or to biodiversity if one country stops while the rest carry on?

Over the past few centuries, most people here in Norway have been lifted out of poverty. The same is true in many regions of the world. We should not forget that. But this prosperity has come at a high price, a debt we are only now beginning to pay off. Before the Industrial Revolution, the atmosphere contained 275 CO2 parts per million. At the moment of writing, that figure is 400 ppm and it is still rising. Devastating climate change is unavoidable at this rate. Sooner or later we must attempt to return to pre-industrial CO2 levels. 

According to Dr James Hansen, considered by many to be one of the world’s leading climate researchers, we must – initially at least – get this level down to 350 ppm. Only then can we feel reasonably secure that we will escape the worst catastrophes for this planet and for our civilization. But the figure is not going down. It is going up.

If we are to save biodiversity, we need to revolutionize our thinking. Living as though everything centers on our time is just as naive as thinking the Earth is flat. Our time is no more significant than future times. It is only natural that our time is the most significant to us. But we cannot live as though our time is also the most important one for those who come after us. We must respect future times as we respect our own time.
In relationships between individuals and between nations, we have emerged from our “natural state”, characterized by the survival of the fittest. But when it comes to the relationship between generations, unbridled lawlessness still reigns.

Everyone has the right to practice their beliefs, and everyone has the right to hope that our planet can be saved. But that does not guarantee that there will be a new heaven and a new earth awaiting us. It is unlikely that supernatural forces will bring about a Judgement Day. But it is inevitable that we will be judged by our descendants.

Climate change comes down to greed. The destruction of biodiversity comes down to greed. But greed does not trouble the greedy. History is our witness. 

The ethical question is not difficult to answer – what is difficult is living by the answer. But if we forget our descendants, they will never be able to forget us. The question of how widely we should apply the reciprocity principle comes down to identity. What is a human being? Who am I? If I were merely myself – that is, the body sitting here writing – I would be a creature without hope. But my identity goes deeper than my own body and my own short time on Earth. I am a part of – and I take part in – something which is bigger and greater than myself. Humans tend to have a local and short-term sense of who they are. We used to have to scan our surroundings, wary of dangers and prey. That gives us a natural tendency to defend ourselves and protect our own. But we do not have the same natural tendency to protect our descendants, not to mention species other than our own.

Favoring our own genes lies deep within our nature. But we don’t have the same instinct to protect our genes four or eight generations down the line. That is something we must learn – just as we had to learn to respect human rights. Ever since our species emerged in Africa, we have fought a determined battle to prevent our branch of the evolutionary tree from being cut off. That battle has been successful, for we are still here. But we have become so prosperous that we are threatening the basis of our own survival. We have become so prosperous that we are threatening the basis of every species’ survival.
As clever, vain and inventive as we are, it is easy to forget that we are simply primates. But are we really so clever if we put our cleverness and inventiveness ahead of our responsibility for the future of the planet?

No longer can we think only about one another. The planet we live on is an essential part of our identity. Even if our species is destined to die out, we still carry an important responsibility for this unique planet and for the nature we leave behind. Modern humans think we are almost entirely shaped by our cultural and social history, by the civilization which produced us. But we are also shaped by our planet’s biological history. There is a genetic heritage as well as a cultural one. We are primates. We are vertebrates.

It took billions of years to create us. Billions of years to create a human being! But are we going to survive the next millennium?

What is time? First we have the horizon of the individual, then of the family, of culture and of literary culture, but there is also geological time – we come from tetrapods that crawled out of the sea 350 million years ago – and finally, there is cosmic time. Our universe is almost 13.7 billion years old.

But in reality, these periods of time are not as distant from one another as they may seem. We have reason to feel at home in the universe. The planet we live on is precisely one third of the age of the universe, and the class of animals to which we belong, the vertebrates, has existed for a mere 10 per cent of the time our solar system and life on Earth have existed. The universe is no more infinite than that. Or conversely: our roots and our kinship are intricately and deeply woven into the universal soil.

Human beings may be the only living creatures in the entire universe who have a universal consciousness. We have a staggering sense of the immense and mysterious cosmos we are part of. Therefore, not only do we have a global responsibility to save our planet. We have a cosmic responsibility.”

This is the foreword to the 20th anniversary edition of ‘Sophie’s World’ (Weidenfeld & Nicholson, £8.99) published 8th October 2015. Translation © Paul Russell Garrett 2015 is published 8th October 2015.

Also visit us at:

Leave a comment

Recent Events of Note—January, 2018

Sierra Club

Sierra Club for Clean Air

“Jerry Brown led the planning for a Climate Action Summit to be held in September 2018.”

By Dr. John J. Hidore

The Politics of Climate Change

President Trump stated campaigning that he would take the United States out of the Paris Agreement of December 2016. He began the process soon after elected. As a result, two things happened. It rallied the rest of the world governments to act more decidedly to curb greenhouse gas emissions. In the summer meeting of the G20 countries, all except the United States confirmed their commitments to the Paris Agreement. The country of Sweden has committed to carbon neutrality by 2045. Germany has pledged to reduce carbon emissions by 40% by 2020 and 80% by 2050.

The second thing that happened as a result of the U.S. backing out of the Paris Agreement… united many cities, states, and people to join the forces to slow global warming and climate change. It also lead to the formation of new non-governmental organizations pledge to fight climate change. In the United States new groups include America’s Pledge and We are still in. A recently formed group known as the Global Covenant of Mayors has more than 7000 members worldwide. In the summer of 2017 governor Jerry Brown led the planning for a Climate Action Summit to be held in September 2018.

building green

Cities, states and individuals must do their part in preventing climate change.

Climate Events of Note

A number of environmental events occurred recently that made climate change real to many who had questioned it. They include unusually high temperatures. Evidence indicates the earth is now the warmest it has been in the last 650,000 years. The winter of 2016-2017 was unusually warm. Temperatures were as much as 35°F (19.5°C) above the 30 year average. Record high temperatures occurred in many countries including the United States. In 2017 a record high of 129 °F (60°C) was recorded in the city of Ahvas, Iran.

In the past several decades the temperature in Phoenix, Arizona at the metropolitan airport has reached such high temperatures that air traffic has been curtailed or stopped for some hours. The reason is that the air over the runway became too thin for large aircraft to get enough lift to ensure becoming airborne. In the summer of 2017 such an event took place. The temperature at the airport weather station reached 119°F (84°C).

I experienced a similar incident that occurred at the airport in Lagos, Nigeria many years ago. The asphalt on the field became so warm and soft on a hot day that the wheels of a large cargo plane sank through the tarmac.

The last climate event to note…..the 2017 tropical storm season was marked by severe storms in several regions. Category four or five storms occurred in the North Atlantic region and in the Northwest Pacific region. Two category four hurricanes reached the United States. It is the first time two storms of this severity have reached the U.S in a single hurricane season!

Leave a comment

The Climate of Hope: A Review

Climate Chane

Cities move forward to save our planet

“How Cities, Businesses, And Citizens Can Save the Planet, by Michael Bloomberg and Carl Pope. St Martin’s Press, NY 2017”

By Dr. John J. Hidore

December 21, 2017—–This book is the product of two individuals with very different backgrounds but with a common objective. That objective, to provide some data and suggestions for slowing or halting climate change and its consequences. They each are vastly experienced in dealing with climate change. In this book they present a positive future for climate change and some solutions for solving the problem of the rapidly warming planet.

City of Hope

Michael Bloomberg

About the Authors

Michael Bloomberg is a former mayor of New York city.  Bloomberg discusses the role cities play in greenhouse gas emissions and why they must and can lead the way to lower emissions.  At the present time the majority of the global population lives in urban areas. By 2050 it is estimated that 75% of all people on the planet will live in cities.

Carl Pope is an internationally known leader in the effort to protect the environment. Early in his career he served in the Peace Corps in India. On returning to the United States Pope began working as a lobbyist for the Clean Air Act. The primary purpose of the act was to reduce greenhouse gas emissions. 

Oil was gradually replacing coal as the overall primary fuel. It was not until 2016 that oil passed coal as the major source of greenhouse gas emissions. Gasoline and diesel oil were the primary fuel for vehicles and still are today. However natural gas, hydrogen and electricity have been added to the mix.

Pope states that we are now on the springboard of using electricity for vehicle power. In addition to his work on the Clean Air Act, Pope also served as executive director of the Sierra Club for ten years.

Michael Bloomberg

Cities move forward to stop climate change.

The Question of Climate Change

The two men point out that the climate of the planet has been changing for four and a half billion years. However, it is hard to define climate change because numerical data on climate change is available for less than two centuries. A major question is how far back must we go to be certain that things are different now than in the past.

Another question is the role of the human species in climate change. People have been changing the natural environment for thousands of years, or perhaps longer. It has only been since 1960 that burning fossil fuels began contributing more greenhouse gases to the atmosphere than agriculture and deforestation.

The authors believe that climate change can be stopped. The way to do it is for people, businesses, and cities to take the power available to them to change the way things are done. 

These groups can show the world how to make the changes necessary, to not only stop climate change, but generally make the world a better place to live. This can be done by changing the way the economic markets work. Pope and Bloomberg suggest a variety of changes that can and should be made.

Cities and the People, Not Governments, Will Take the Lead

Mr. Bloomberg suggests the cities of the world will be the decision makers in reducing global warming and climate change. The simple reason? They must deal with many aspects of climate change on a day to day basis. Cities are beginning to band together to share knowledge of how to deal with climate change. A recently formed group called the Global Covenant of Mayors now has more than 7000 members from around the world.

Another significant event that is occurring with respect to climate change is the widespread public support for taking action. Demonstrations around the world are evidence that people will act!

Leave a comment

Factors Resulting in Long Term Climate Change

climate change

Climate Change over geological time

“Long-term climate changes are those changes over Geologic time that may persist for millions of years.”

By Dr. John J. HIdore

December 6, 2017—–Long-term climate changes are those changes over Geologic time that may persist for millions of years. The intermittent ice ages that have occurred through the span of earth history are an example. The processes which have produced these long-term changes, for the most part, also take place slowly.

Earth–Sun Relationships

Regular variations in the motion of the earth as it travels around the sun explain daily and seasonal differences in the amount of solar energy arriving at the surface. However, the angle of the earth’s axis and the distance from Earth to the sun vary over time.

The obliquity of the ecliptic: This term refers to the angle of Earth’s axis in relation to the plane in which the earth revolves around the sun. This angle is not constant. On a cycle of a period of about 41,000 years, the angle varies some 1.5° about the mean of 23.1°. If the earth’s axis were perpendicular to the plane there would be equal lengths of day and night over the globe and result in little seasonal change. If the angle were greater than 23.5 there would be greater extremes in the lengths of summer and winter days and nights and to cause distinctive changes in the distribution of Earth’s climates.

Earth’s orbital eccentricity: The earth moves around the sun in an elliptical orbit; the eccentricity of the orbit is derived by comparing the path to that of a true circle. Currently the orbit is relatively close to a circle. Over the past million years, the orbit has changed from almost circular to a distinctly oblong shape. This change influences the amount of solar radiation intercepted by the earth and modifies the dates at which the solstices and equinoxes occur.

climate change

Climate change through geological time

Distribution of Continents

One set of theories of climatic change deals with the location of continental land masses in relation to the position of the poles and the equator. Reconstructed maps for the Permo-Carboniferous glaciation (250 million years ago) and those of the most recent Pleistocene glaciation show that in both cases there was a concentration of land masses in the polar realms. However, there have been times when such a location occurred, but no glaciation resulted.

Intimately related to the idea of moving continents is the role of mountain building. As an explanation of this theory, one only has to think of the formation of snow and ice on Mt. Kilimanjaro located astride the equator. Geologists have long noted the relationship between times of extensive mountain-building periods and some of the ice ages. For example, both the Permo-Carboniferous and recent ice ages were preceded by extensive mountain-building periods.

Variation in the Oceans

Modern research in climatology is paying increasing attention to the role of the oceans in the climatic system. The oceans have received attention, providing in some cases the basis of entire theories of climatic change. Some of the ways in which the oceans influence the prevailing climates on Earth include the following:
1. Changes in the elevation of the land is a factor. A drop in sea level would increase the heights of the continents and enlarge land masses.
2. The oceans are less variable in temperature than the continents, and changes in the relative temperature of oceanic waters influence world climates. Variations in the energy storage in the oceans can occur because of changes in salinity, evaporation rates, and relative solar penetration.
3. Oceans play a significant role in the redistribution of energy over the earth’s surface. Ocean currents transport large amounts of heat, and any changes in their relative extent and direction of flow have a great impact on climate.

Extraterrestrial Impacts

At intervals throughout the history of Earth, exceptionally large objects from space have struck the earth. When these objects struck Earth, some altered the climate tremendously for short periods and in some cases for periods of thousands of years. The boundary between the Cretaceous and Tertiary geologic periods was approximately 65 million years ago. Much evidence now points to a large object impacting the earth at this time. It certainly altered the climate. The impact produced firestorms over the earth, destroying much of the vegetation. These same fires would have removed much of the atmospheric oxygen and added large amounts of carbon dioxide.
A huge dust cloud was raised that blocked out the sun for months causing temperatures to drop. The fires also contributed a huge cloud of soot to the atmosphere. The sustained cloud of solid particles would have greatly reduced solar radiation to the ground. Precipitation would have turned into acid rain and snow as the highly sulfurous particles combined with water particles in the atmosphere.

Other Theories

The theories presented herein are a partial representation of those that have been suggested. Other researchers have introduced ideas ranging from the possible influence of the periodic passage of the earth through an interstellar dust cloud to variations in atmospheric water vapor caused by both natural and human activities. Despite all of these ideas, there is no single theory that can account for all of the observed events; it is evident that earth’s climates result from a spectrum of causal elements.
Follow us on facebook at:


Climate Change Over Geological Time

Glacial Ages and Climate

Climate Change Over Time

“Climate change at the present is of great consequence to most species including humans.

By Dr. John J. Hidore

November 15, 2017—-Planet Earth was formed about 4.5 billion years ago. Geologists have divided this long history of the planet into several pieces called eras. They are the Precambrian, Paleozoic, Mesozoic, and Cenozoic.

The Precambrian is the longest and each of the other three are shorter than the previous one. When considering climate change through geologic time, two aspects stand out. The first is that for most of geologic time Earth has been warmer than it is at present. How much warmer varied through time. The second feature that stands out is the intermittent ice ages when large portions of the earth were covered with ice.

Major Ice Ages

Relatively little is known about the long period of Precambrian time. Basically it was the period during which the earth cooled from its initial very hot state. The Paleozoic, Mesozoic, and Cenozoic eras encompass the rest of geologic time, about 570 million years. More evidence, and a greater variety of
evidence, is available about the environment during these eras. The climate of Earth varied widely during this time. However, it has been established that there were three known periods of glaciation in Precambrian time. They were:

Archeozoic 2250 million years ago (mya)
Early Precambrian: 950 million years ago
Late Precambrian: 750 million years ago

There were four major glaciations following that of the Precambrian era. They were:

Early Cambrian: 650 mya
Ordovician: 450 mya
Permo-Carboniferous: 350-250 mya
Pleistocene: 1.8 mya until recent time

Following the ice age at the end of the Precambrian, the earth rapidly warmed. For the remainder of the history of the earth, temperatures have averaged 5 degrees C (9°F) higher than at the present. These warmer conditions existed probably 90 percent of the time over the past 570 million years.

The Permo-carboniferous Ice Age

An ice age, called the Permo-carboniferous, began at the end of the Paleozoic Era. It began about 325 million years ago and lasted until about 250 million years ago. The South Pole was in the midst of the large land mass called Gondwanaland. Ice sheets moved over about half of this large land mass. What is now Antarctica and parts of Australia, India, Africa, and South America were covered with ice. The glaciation of each of these areas did not take place at precisely the same time, but they were all affected by the same climatic cooling. The Southern Hemisphere suffered widespread glaciation, but the Northern Hemisphere remained warm. The most appealing explanation for this situation is a different relative location of the land masses. The northern continents were nearer the equator and the southern land masses nearer the poles.

Climate Change

Climate Change over time.

The Warming of the Earth

After the glaciation in the Permo-Carboniferous ice age, the earth again entered a long period of warm conditions. The period of warmth continued through most of the Mesozoic Era and the earth was free of glaciation. Temperatures were warm and rainfall was abundant on the land masses. Even the polar regions experienced mild weather. Initially, the warmer conditions resulted from the slow migrations of the large southern hemisphere land mass to the north. This carried areas that had been glaciated into warmer climates.

The Pleistocene Ice Age

The most important single environmental event since the human species has been on earth has been the oscillation between glaciation and interglacials during the Pleistocene Epoch. The epoch represents a large change from much of the last 570 million years. This ice age is the most recent of the major cold periods to occur over the history of the planet. During the time when the ice was most extensive over Earth, temperatures averaged about 4°C (7°F ) lower than those of the present. In the northern hemisphere it was perhaps 8 to 12 °C ( 14 to 22°F) lower than current temperatures. 

There is no question but what the climate of planet earth has changed frequently, and sometimes drastically, over geologic time.

Climate Change Today

Climate change at the present is of great consequence to most species including humans. There is really no way of knowing how much change will take place in the foreseeable future nor how much is due to the activity of our species. What is known is the earth is warming rapidly at this time and that all evidence points to human activity as bearing the responsibility.

Now is the time to take international action and not only support the Paris Agreement, but take even more drastic measures to curtain the warming!

Climate Change

Follow us on Facebook at:

Leave a comment

Puerto Rico: Rebuilding Sustainably

Renewable Resources


“Building sustainably in Puerto Rico can take many different forms.” 

By Linn Smith

October 19, 2017—Even though Puerto Rico is going through a devastating time after the hurricane, it is essential that we not only meet the current needs of the people, but also think about its future….rebuilding sustainably. Areas devastated by wind and flooding must not only think about immediate needs, but consider the future way climate change may threaten vulnerable coastal areas. 

There is an agreement among scientists that our warming climate is producing larger, more aggressive hurricanes, and rising oceans are leading to stronger storm surges, destroying and flooding inland areas.

Puerto Rico: Sources of Energy

According to the U.S. Energy Information Administration, Puerto Rico has some renewable solar, wind, hydropower and biomass resources, but relies primarily on imported fossil fuels to meet its energy needs, importing mostly from the U.S.

In 2016, Puerto Ricans paid more for their power than people in any other state except Hawaii, with 47% of electricity coming from petroleum, 34% from natural gas, 17% from coal and only 2% from renewable energy.

The Future of Energy in Puerto Rico

Now is the time to make decisions about Puerto Rico’s future energy needs. How will Puerto Rico get its power in the future? PREPA, the Puerto Rico Electric and Power Company, Puerto Rico’s only utility company, is mismanaged and highly in need of upgrading according to some sources. According to, it would be a waste to pour more money into this system. Instead, we need to invest funds into local renewables and energy efficient transportation, such as streetcars and light rail trains. 

Richard Heinberg in the article “Disaster in Puerto Rico” stated, “This is a chance to build back sustainably. People tend to maintain their status quo as long as it’s viable, but when in dire straits, they’re more likely to listen and when denial is no longer possible, people are more likely to face reality.”

Eigg renewables

Eigg uses 99% Renewable Energy

Eigg, Scottland: 99% Renewable

According to an article by David Nield, March 2017,, researchers from around our planet are visiting the tiny, Scottish island of Eigg, which is using wind, solar and hydo to obtain the island’s power. This system, owned and operated by the island’s residents, has been using sustainable energy since 2009. Eigg Electric uses a combination of sustainable resources to ensure there is always energy. When back-up energy is needed, it’s supplied by several diesel generators with cables linking all the sources of energy together. Renewable energy is used 95% of the time and excess energy is stored in a bank of 100 batteries. When these batteries are full, electric heaters automatically switch on in the church and community hall so nothing is wasted. Eigg’s population has doubled since this system has been in place, but the system is still meeting the needs of the residents. The drawback is that citizens are limited to the amount of power they can use daily from the public utilities
Ta’u, a small island in Samoa, is also changing from diesel to renewables. Today it’s powered by 5,000 Solar City solar panels and 60 Tesla Powerpack battery storage units. The Powerpack is a massive battery, 16 Powerwall battery pods encased in a weatherproof box, that can store electricity during the day when supply is abundant and discharge it when demand goes up after the sun goes down. This system provides the island with about 99% of its needs.

Tesla solar project in Hawaii.

Tesla and the Powerpack Battery

Tesla has also built a huge solar energy plant on the island of Kauai, one of Hawaii’s main islands. This project will reduce fossil fuel by 1.6 million gallons per year. The island signed a 20 year contract with Tesla to buy solar generated electricity from solar panels installed on the island for 13.9 cents per kilowatt hour. The average price of electricity in Hawaii is 37.34 cents per kwh, the highest rate in the nation. Kauai is the first major solar/storage project for Tesla. Tesla states, “We will work with energy providers around the world seeking to overcome barriers in the way of building a sustainable, renewable energy grid of their own.”

Tesla is also in the process of shipping battery packs to Puerto Rico, but details of the project have not yet been made available. Building sustainably in Puerto Rico can take many different forms and accepting help from Tesla could be a starter.

Find us also on Facebook at:

Puerto Rico: Build Sustainably

Leave a comment

Living Green: Using Our Resources 

building green

Cities, states and individuals must do their part in preventing climate change.

Remember: Recycle, Reduce, Reuse!

By Linn Smith

October 12, 2017—-People in developed countries are losing the ability to be resourceful! We “run to the store” impulsively on a daily basis. How did folks survive without today’s conveniences? Today nearby stores provide us with our every need, and we too often toss excess and unused products in the garbage, leaving our landfills and oceans overloaded with toxic materials that may never decompose!

Growing up on a farm, we grew most of our own food. Our basement was lined with many shelves containing hundreds of jars filled with colorful, canned foods from our garden. Cows, pigs and chickens provided us with fresh meat, and our dairy cows provided the milk we drank, and it wasn’t pasteurized! My mother strained the milk through a cheesecloth to get the big chunks (of whatever) out…..and my brothers, sisters and I all grew up healthy! Farm life was what we call green living today….but back then it was just life!

Families use to be resourceful. To obtain something they needed, they reused, fixed, mended or created something new from what they already had.  My grandmother created children’s mittens from old sweaters, it saved money and no new items were purchased.

Earth Day: Let's Clean and Green!

Earth Day today and every day!

Eco-friendly Steps to Going Green

What are some eco-friendly steps we can take to conserve today? Here are just a few:

1. Turn some of your yard (or all of it) into a garden and can or freeze the vegetables. Yards were originally for very wealthy families in England, who used sheep to keep the grass trimmed. Lawns weren’t meant to look like  golf courses. They had dandelions and clover. Today our lawns are toxic with chemicals and leave  huge carbon footprints!

2. Buy unpackaged products from local farmers at farmer’s markets.

3. Cook from scratch instead of buying processed food. It tastes better!

4. Make restaurants an occasional option, not a daily trip. (This includes Starbucks!).

5. Buy second-hand from used stores, garage sales, or auctions. Fix, mend or make-do.

6. Don’t buy more than you need. Several years ago we stored most of what we thought was our valuable “stuff” and went RVing. It cost well over $1000 to store. When we returned and assessed our “stuff,” we realized we could live without most of it. We had a garage sale, making several hundred dollars from the sale of our valuables that had cost over a $1000 to store!

7. Recycle and compost.

Earth Day

Clean Energy: Make It a Priority!

Why Not Go Green?

Here are some excuses people make to avoid helping our planet:

1. It’s too expensive…BUT, if you shop around most things are comparable.

2. One person can’t make a difference….YES, you can! Good thing everybody doesn’t feel this way!

3. No one else around me is living eco-friendly…..WELL, THEN….how ’bout you be the first!

4. It’s too late. The planet is already doomed….OK, pull your head out of the sand and look around at what positive people are doing!

5. Global warming is a myth. NO IT’S NOT! (But I won’t waste my time arguing with you on this point!)

6. It takes too much time and effort. It’s like anything else, it becomes routine when done on a regular basis.

Before you buy something, ask yourself if you really need it, or is there something you already have that could be used…or ask, Can I make do with less?

Remember: Recycle, Reduce, Reuse!

Recycle, Reduce, Reuse!

Visit us at:

Leave a comment

Storms: Global Warming Sets 21st Century Record


Hurricane off the shore of the U.S.

“The prognosis is for these marine storms to become more intense with time.”

By Dr. John J. Hidore

October 2, 2017—-In the many years since global warming and climate change became recognized as a global problem, it has been forecast that severe storms would become more severe. The severity of hurricanes in the 21st Century supports this forecast.

North Atlantic Hurricanes

Hurricanes occur in many parts of the world’s oceans and go by different names in different regions.
In the North Atlantic and South Atlantic Oceans, they are called hurricanes. In the North Atlantic, the hurricane season runs from June 1 to November 30 and most hurricanes occur during this period.

In 2017, the first storm to reach hurricane strength was Arlene on April 19, well before the normal season begins. It was only the second named storm to occur in April since records began. This year, in 2017, is the first time that two hurricanes of category four reached the United States. Both of these were Atlantic hurricanes. If the recent hurricane that struck Puerto Rico is included it raises that number to three.

South Atlantic Hurricanes

Hurricanes are rare in the Atlantic Ocean south of the equator. Many tropical lows develop in this region, but Hurricane Catarina, in 2004, was the first and only tropical depression in history to reach hurricane status in this part of the global ocean.


Heavy hurricane winds threaten the coast.

North Pacific Severe Storms

The northern Pacific Ocean is divided into two regions for naming severe cyclonic storms. North of the Equator and East of the International Date Line at 180 degrees, they are hurricanes. The eastern Pacific hurricane season begins earlier than does the Atlantic season. It runs from May 15 through November. In 2017, the first system to reach tropical storm status was Adrian and developed on May 9, the earliest on record. However, it did not reach hurricane strength.

The northwest Pacific region extends from 100 degrees East to the International date line. In this region the storms are referred to as typhoons. Most of the worst typhoons on record have occurred in the 21st Century. This is particularly true when fatalities indicate the severity. The Philippine Islands lie in the path of these storms. Between five and ten tropical cyclones make landfall in the islands each year. Haiyan, in 2013, was the most severe on record, taking more than 6000 lives and displacing several million people. The local name for the storm was Typhoon Yolanda. The first typhoon of 2017 formed on January 7. Typhoon Noru formed in July and became a Category 5, or super typhoon.


The eye of the hurricane

Indian Ocean Cyclones

In the Indian Ocean and western parts of the South Pacific region, these storms are called cyclones. In 2015 Cyclone Pam reached a Category 5 status with sustained winds of 160 mph

The Coming Years

Climate change, and particularly warmer water in the Pacific Ocean are most certainly contributing to the increased severity of the storm. The prognosis is for these marine storms to become more intense with time. 

Follow us at: